skip to main content


Search for: All records

Creators/Authors contains: "Lei, Zepeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Covalent adaptable networks (CANs) represent a novel class of polymeric materials crosslinked by dynamic covalent bonds. Since their first discovery, CANs have attracted great attention due to their high mechanical strength and stability like conventional thermosets under service conditions and easy reprocessability like thermoplastics under certain external stimuli. Here, we report the first example of ionic covalent adaptable networks (ICANs), a type of crosslinked ionomers, consisting of negatively charged backbone structures. More specifically, two ICANs with different backbone compositions were prepared through spiroborate chemistry. Given the dynamic nature of the spiroborate linkages, the resulting ionomer thermosets display rapid reprocessability and closed-loop recyclability under mild conditions. The materials mechanically broken into smaller pieces can be reprocessed into coherent solids at 120 °C within only 1 min with nearly 100% recovery of the mechanical properties. Upon treating the ICANs with dilute hydrochloric acid at room temperature, the valuable monomers can be easily chemically recycled in almost quantitative yield. This work demonstrates the great potential of spiroborate bonds as a novel dynamic ionic linkage for development of new reprocessable and recyclable ionomer thermosets. 
    more » « less
  2. Chemical recycling of polymers is critical for improving the circular economy of plastics and environmental sustainability. Traditional thermoset polymers have generally been considered permanently crosslinked materials that are difficult or impossible to recycle. Herein, we demonstrate that by activating ‘dormant’ covalent bonds, traditional polycyanurate thermosets can be recycled into the original monomers, which can be circularly reused for their original purpose. Through retrosynthetic analysis, we redirected the synthetic route from forming conventional C–N bonds via irreversible cyanate trimerization to forming the C–O bonds through reversible nucleophilic aromatic substitution of alkoxy-substituted triazine derivatives by alcohol nucleophiles. The new reversible synthetic route enabled the synthesis of previously inaccessible alkyl-polycyanurate thermosets, which exhibit excellent film properties with high chemical resistance, closed-loop recyclability and reprocessing capability. These results show that ‘apparently dormant’ dynamic linkages can be activated and utilized to construct fully recyclable thermoset polymers with a broader monomer scope and increased sustainability. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Covalent adaptable network (CAN) polymers doped with conductive nanoparticles are an ideal candidate to create reshapeable, rehealable, and fully recyclable electronics. On the other hand, 3D printing as a deterministic manufacturing method has a significant potential to fabricate electronics with low cost and high design freedom. In this paper, we incorporate a conductive composite consisting of polyimine CAN and multi-wall carbon nanotubes into direct-ink-writing 3D printing to create polymeric sensors with outstanding reshaping, repairing, and recycling capabilities. The developed printable ink exhibits good printability, conductivity, and recyclability. The conductivity of printed polyimine composites is investigated at different temperatures and deformation strain levels. Their shape-reforming and Joule heating-induced interfacial welding effects are demonstrated and characterized. Finally, a temperature sensor is 3D printed with defined patterns of conductive pathways, which can be easily mounted onto 3D surfaces, repaired after damage, and recycled using solvents. The sensing capability of printed sensors is maintained after the repairing and recycling. Overall, the 3D printed reshapeable, rehealable, and recyclable sensors possess complex geometry and extend service life, which assist in the development of polymer-based electronics toward broad and sustainable applications.

     
    more » « less
  5. Cutting-edge technologies of stretchable, skin-mountable, and wearable electronics have attracted tremendous attention recently due to their very wide applications and promising performances. One direction of particular interest is to investigate novel properties in stretchable electronics by exploring multifunctional materials. Here, we report an integrated strain sensing system that is highly stretchable, rehealable, fully recyclable, and reconfigurable. This system consists of dynamic covalent thermoset polyimine as the moldable substrate and encapsulation, eutectic liquid metal alloy as the strain sensing unit and interconnects, and off-the-shelf chip components for measuring and magnifying functions. The device can be attached on different parts of the human body for accurately monitoring joint motion and respiration. Such a strain sensing system provides a reliable, economical, and ecofriendly solution to wearable technologies, with wide applications in health care, prosthetics, robotics, and biomedical devices. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    Wearable electronics can be integrated with the human body for monitoring physical activities and health conditions, for human-computer interfaces, and for virtual/augmented reality. We here report a multifunctional wearable electronic system that combines advances in materials, chemistry, and mechanics to enable superior stretchability, self-healability, recyclability, and reconfigurability. This electronic system heterogeneously integrates rigid, soft, and liquid materials through a low-cost fabrication method. The properties reported in this wearable electronic system can find applications in many areas, including health care, robotics, and prosthetics, and can benefit the well-being, economy, and sustainability of our society. 
    more » « less
  8. null (Ed.)
    Self-healable and recyclable materials and electronics can improve the reliability and repairability and can reduce environmental pollution; therefore, they promise very broad applications. In this study, we investigated the self-healing performance of dynamic covalent thermoset polyimine and its nanocomposites based on the dynamic covalent chemistry. Heat press was applied to two laminating films of polyimine and its nanocomposites to induce self-healing. The effects of heat press time, temperature, and load on the interfacial shear strength of the rehealed films were investigated. The results showed that increasing the heat press time, temperature, and load can significantly improve the interfacial shear strength and thus the self-healing effect. For polyimine nanocomposites, increasing the heat press time, temperature, and load led to the improved electrical conductivity of the rehealed films. 
    more » « less